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The second and third order elastic constants and pressure derivatives of second order
elastic constants of hexagonal boron nitride have been obtained using the deformation
theory. The strain energy derived using the deformation theory is compared with the strain
dependent lattice energy obtained from elastic continuum model approximation to get the
expressions for second and third order elastic constants. Higher order elastic constants are
a measure of anharmonicity of crystal lattice. The six second-order elastic constants and
the ten non-vanishing third order elastic constants and six pressure derivatives of
hexagonal boron nitride are obtained in the present work and are compared with available
experimental values. The second order elastic constant C11 which corresponds to the elastic
stiffness along the basal plane of the crystal is greater than C33. Since C33 being the
stiffness tensor component along the c-axis of the crystal, this result is expected from a
layer-like material like boron nitride (BN). The third order elastic constants of hexagonal BN
are generally one order of magnitude greater than the second-order of elastic constants as
expected of a crystalline solid. The pressure derivative dC33/dp obtained in the present
study is greater than dC11/dp which indicates that the compressibility along c-axis is higher
than that along ab-plane of hexagonal BN. C© 2002 Kluwer Academic Publishers

1. Introduction
Knowledge of higher order elastic constants like second
and third order elastic constants is essential for the study
of the anharmonic properties of solids. The hexagonal
crystals have six second order elastic constants and ten
third order elastic constants. Elastic constants also pro-
vide insight into the nature of binding forces between
the atoms since they are represented by the derivatives
of the internal energy.

As with a number of technologically useful materi-
als a growth of the diversity of the application of boron
nitride has led to a desire to understand its fundamen-
tal properties fully. This has resulted in the investiga-
tion of a variety of physical properties [1–11], attempts
at explaining some of which have been made subse-
quently with reference to the corresponding behaviour
of pyrolytic graphite, the lamellar structure of which re-
sembles that of the hexagonal form of born nitride. Al-
though several attempts at evaluating the second-order
elastic constants [12, 13] theoretically were made, there
is hardly any measurement on the complete set of the
second-order as well as third order elastic constants of
hexagonal boron nitride.

In this paper, the expressions for the second order
and third order elastic constants of hexagonal crystals
are derived using the sublattice displacements up to first
order in strains. The expression for the effective second-

order elastic constants based on finite strain elasticity
theory in terms of the second and third order elastic
constants have been worked out for hexagonal crystals.
These expressions are used to obtain the first order pres-
sure derivatives of the second order elastic constants of
hexagonal BN.

2. Second and third order elastic constants
Considering interactions up to second neighbours, the
potential energy of hexagonal BN per unit cell is

φ = φ0 +
6∑

I=1

φR(I ) +
∑
j=1

φR(J ) (1)

Here, I atoms are the six neighbours of the same type in
the basal plane and J atoms are the six non-equivalent
atoms which are out of the basal plane. Here φ0 is the
static potential energy of the crystal.

The components of interatomic vector R after defor-
mation are given by

R′
i (I ) = Ri (I ) +

∑
j

∈ij R j (I )

R′
i (J ) = Ri (J ) +

∑
j

∈ij R j (J ) + Wi (2)

0022–2461 C© 2002 Kluwer Academic Publishers 5237



Here ∈i j are the deformation parameters and are
related to the macroscopic Lagrangian strains by

ηi j = 1

2

(
∈i j + ∈i j +

∑
k

∈ki ∈k j

)
(3)

Wi are the components of the internal displacements
of the lattice of particles of the type J relative to the
lattice of particles of the type I and are replaced by the
relative internal displacements W̄i by the relation.

W̄i = Wi +
∑

j

∈ j i W j (4)

The potential energy is expanded in powers of the
changes in squares of the vector distances R(I ) and
R(J ) as

φ = φ0 + k2

[ ∑
I

[�R2(I )]2 +
∑

J

[�R2(J )]2

]

+ k3

[ ∑
I

[�R2(I )]3 +
∑

J

[�R2(J )]3

]
+ · · ·

(5)

Here k2 is the second order harmonic parameter and
k3 is the third order anharmonic potential parameter
respectively.

The strain energy derived from continuum model ap-
proximation (14) is

U = 1

2!
Ci jkl ηi j ηkl + 1

3!
Ci jklmn ηi j ηkl ηmn + · · · (6)

where Ci jkl and Ci jklmn are the second order and third
order elastic constants in the tensor notation.

Comparing this with the lattice energy from Equa-
tion 5 we get the expressions for second and third-order
elastic constants in Voigt’s notation of hexagonal boron
nitride, as

C11 = 116

3

D4k2

Va
(7a)

C12 = 41

8

D4k2

Va
(7b)

C13 = 5

3
p2 D4k2

Va
(7c)

C33 = 3p4 D4k2

Va
(7d)

C44 = 2p2 D4k2

Va
(7e)

C66 = 63

8

D4k2

Va
(7f)

C111 = 1099

10

D6k3

Va
+ 23

3

D4k2

Va
(8a)

C112 = 83

5

D6k3

Va
− 7

5

D4k2

Va
(8b)

C113 = 5

3
p2 D6k3

Va
+ p2 D4k2

Va
(8c)

C123 = 7

5
p2 D6k3

Va
− p2 D4k2

Va
(8d)

C133 = 16

5
p4 D6k3

Va
(8e)

C144 = 2p2 D6k3

Va
(8f)

C155 = 4

3
p2 D6k3

Va
(8g)

C222 = 175

2

D6k3

Va
+ 39

5

D4k2

Va
(8h)

C333 = 9

2
p6 D6k3

Va
(8i)

C344 = 3p4 D6k3

Va
(8j)

where Va is the volume of the unit cell, D is the nearest
neighbour distance and p is the axial ratio c/a. The
potential parameter k2 has been obtained by substituting
the value of C33 = 32.4 GPa measured by Green et al.
[2] in Equation 7d and k2 thus obtained is given in
Table II.

The values of second order elastic constants of hexag-
onal BN are obtained by substituting this value of k2
in Equations 7 and are given in Table I along with the
other reported values.

The third-order anharmonic parameter k3 in
Equation 8 is evaluated by substituting the value of
C333 = −589.6 GPa measured by Green et al. [2] in
Equation 8i. The value of k3 thus obtained is given
in Table II. Substituting the values of k2 and k3 from
Table II in Equations 8 we get the third-order elastic
constants of hexagonal BN. The values of third-order
elastic constants thus obtained for hexagonal BN are
given in Table III.

TABLE I Second order elastic constants of hexagonal BN (in GPa)

Experimental Calculated
Ci j Present work value [2] value [15]

C11 55.5 – –
C12 7.4 – –
C13 6.6 – –
C33 32.4 32.4 –
C44 7.9 – 6.2
C66 11.3 – –

TABLE I I Values of potential parameters k2 and k3 for hexagonal BN

k2 D4

Va
(GPa)

k3 D6

Va
(GPa)

1.436 −6.353
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T ABL E I I I Third order elastic constants of hexagonal BN (in GPa)

Experimental
Ci jk Present work value [2]

C111 −687.2 –
C112 −107.5 –
C113 −25.1 –
C123 −28.3 –
C133 −152.9 –
C144 −34.8 –
C155 −23.2 –
C222 −544.7 –
C333 −589.6 −589.6
C344 −143.3 –

3. Pressure derivatives of the second-order
elastic constants of hexagonal BN

The stress tensor is given by Murnaghan [15] as

τi j = ρ

ρ0

3∑
p,q=1

[
∂xi

∂ap

][
∂U

∂ηpq

][
∂x j

∂aq

]
(9)

whereρ0 is density of the natural state andρ is that of the
deformed state respectively. xi are the co-ordinates of
the atoms in a homogeneously deformed state and ai are
the position co-ordinates of the atoms in the unstrained
state of the hexagonal BN.

Comparing this with the expression

τi j = −pδi j +
∑

kl

C ′
i jklβkl (10)

where p being the pressure and βkl being the infinites-
imal strain parameter, the expressions for the effective
second order elastic constants C ′

i jkl can be obtained to
the first order in Lagrangian strains η and ζ [16] as

C ′
11 = C11 + η(4C11 + 2C12 + C111 + C112)

+ ζ (−C11 + 2C13 + C113)

C ′
12 = C12 + η(2C12 + C111 + 2C112 − C222)

+ ζ (−C12 + C123)

C ′
13 = C13 + η(C113 + C123) + ζ (C13 + C133)

C ′
33 = C33 + η(4C13 − 2C33 + 2C133)

+ ζ (5C33 + C333)

C ′
44 = C44 + η

(
1

2
C11 + 1

2
C12 + C13 + C144 + C155

)

+ ζ

(
1

2
C13 + 1

2
C33 + C44 + C344

)

C ′
66 = C66 + η

(
C11 + C12 + 2C66 − 1

2
C112 + 1

2
C222

)

+ ζ

(
C13 − C66 + 1

2
C113 − 1

2
C123

)
(11)

To get the pressure derivatives
dC ′

i j

dp we substitute η

and ζ to the first order in pressure p as

TABLE IV Pressure derivatives of the second-order elastic constants
of hexagonal BN

dC ′
i j

dp
Present work

dC ′
11

dp
9.10

dC ′
12

dp
5.44

dC ′
13

dp
4.43

dC ′
33

dp
15.45

dC ′
44

dp
3.22

dC ′
66

dp
1.84

η = (C13 − C33)p

(C11 + C12)C33 − 2C2
13

and

ζ = (2C13 − C11 − C12)p

(C11 + C12)C33 − 2C2
13

(12)

The pressure derivatives are obtained by taking the
derivative of Equation 11 with respect to pressure p
and substituting the values of second order and third or-
der elastic constants of hexagonal BN given in Tables I
and III.

The pressure derivatives of the second order elastic
constants for hexagonal boron nitride thus obtained are
reported in Table IV.

4. Results and discussion
Hexagonal boron nitride possesses six-second order
elastic constants. The values of second order elastic
constants of hexagonal boron nitride obtained in the
present work are collected in Table II along with ex-
perimental value of Green et al. [2] and the theoretical
value of Kuzuba and Ishi [17]. The elastic constant C44
obtained in the present work is in reasonable agreement
with the value, calculated by Kuzuba and Ishi. The sec-
ond order elastic constant C11 which corresponds to the
elastic stiffness along the basal plane of the crystal is
greater than C33. Since C33 being the stiffness tensor
component along the c-axis of the crystal, this result is
expected from a layer-like material like BN, where the
binding forces along the ab-plane is much higher than
that along the c-axis.

The ten third order elastic constants evaluated in
the present work are given in Table 3. The values ob-
tained in the present work are of the same order as
that of the experimental value. Magnitude of third-
order elastic constants are one order higher than the
second order elastic constants expected of a crystalline
solid [18]. The pressure derivatives of second-order
elastic constants obtained in the present work are pre-
sented in Table IV. dC33/dp obtained in the present
work is greater than dC11/dp which indicates that the
compressibility along c-axis is higher than that along
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ab-plane of boron nitride. This corroborates the layer
like structure of hexagonal boron nitride.
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